notes on implementing fast exhaustive search

Charles Bouillaguet
July 21, 2021

Algo. 1 shows most generic code for quadratic equations (d = 2).

Algorithm 1 Starting Point
1: procedure ZEROES(f)
2. State < INiTI(f,0,0)

3 if ¥y = 0 then report f(0) =0

4 for i from 1 to 2" — 1 do

5: let k1 = bl(Z) in

6: let ko = bg(l) in

7 if ko 7& 1 then D [kl] «~ D [k’l] ® D [k’l, kg]
9 if ¥ = 0 then report f (GRAYCODE(?)) =0

Here, b;(7) returns the index of the i-th bit of the integer 7 set to one. For instance, by (1) = 0,
b1(8) = 3 and b;(10) = 1. When the hamming weight of ¢ is less than k, then by (¢) is not defined,
and returns a special value 1.

To be somewhat efficient, this loop must be unrolled, and the conditional instructions must
be removed as much as possible. This is not very difficult.

Removing the “IF”. The annoying case k; = L only happens when i is a power of two. Pour
avoid it, we split the main loop into n “macro-steps”. This results in Algo. 2.

Unrolling. Now, we must unroll the loop. This means that we will write down a piece of code
that implements a fixed number of STEPs, say 2%, and that we will wrap the required machinery
around it. The best value of L should be determined experimentally (larger values reduced the
overhead of the loop, but may result in a piece of code that does not fit in the cache. Values
around 8,9 or 10 seem reasonable). In the sequel, I will call a block of 2 STEPs a CHUNK. If
we look back to Algo. 1, then the ¢ index will be enumerated as follows :

varies inside
a chunk varies in the outer loop

\T\\\\\\\\\\\\TYTTYTTYKTYKTTYKTYKTYYYYYYTYYTYYYYYYTYYTYYTTYYTYTW

0 L n—1

Note that the first L macro-steps [should not/cannot] be unrolled, because there do not form
a complete CHUNK. It makes sense to put a lot of effort into optimizing a single chunk, as for

Algorithm 2 Without testing ko

1: procedure STEP(z)
2: let k1 = bl(l') in

3: let ko = bQ(I) in

4: D [k}l] «~— D [k’l] ®D [k’l, kz]

5: }7 < 5; @D [kl]

6: if ¥ = 0 then report f (GRAYCODE(z)) =0
7: procedure STEPS(z,y)

8: for ¢ from x to y — 1 do

9: STEP()

10: procedure ZEROES(f)

1. State + INtT¥(f,0,0)

12: if ¥ = 0 then report f(0) =0

13: for j from 0 to n — 1 do // j-th macro-step

14: Yy Y& D[]

15: if ¥ = 0 then report f (GRAYCODE(27)) =0
16: // Now we know that ba(...) # L

17: STEPS (27 4 1,27+1)

large values of n, most of the running time will be spent inside chunks. The k-th chunk of the
j-th macro-step looks like this:

procedure CHUNK(j, k)
STEP (27 + k x 2F)
STEP (27 + k x 28 4+ 1)
STEP (27 + k x 25 4 2)

éTEP(2j+kX2L+2L—1)

In most steps inside a chunk, the values of ki and ks can be known in advance. More
specifically, inside the ¢-th step, k1 depends only on /¢ is £ # 0, and ko depends only on £ if £ is
not a power of two.

Algorithm 3 is the basis of my plain-C implementation.

1 Parallelism

We will try to address the situation where several SIMD units are available. This situation is
typical of multi-core CPUs (modern Opterons have 16 cores, each with its own 4-way 32-bit
SIMD unit), but also corresponds to GPUs (A GTX 295 has 30 SIMD units, and each one is
16-way).

We must then write “SIMD chunks”, i.e. chunks that execute 2515 steps using a 2%-way
SIMD unit. There are several possible ways to do this. My own guess is that we may have
interest run on the same SIMD unit the steps whose number share as many lowest-significant
bits as possible :

Algorithm 3 Split in chunks of size 2~

1: procedure CHUNK(j, k)
2. STEPS (2/ + k x 28,27 4 (k4 1) x 2F)

3: procedure ZEROES(f)
4 State < INiTl¥(f,0,0)
5: if ¥ = 0 then report f(0) =0
6: // Deal with the small macro-steps
7 for j from 0 to min(n, L) do
8 ¥y« y®Dl[j]
9: if ¥ = 0 then report f (GRAYCODE(Qj)) =0
10: STEPS (27 +1,2711)
11: // Now split the large macro-steps in chunks
12: for j from L +1ton —1do
13: Y+ y¥a DI
14: if ¥ = 0 then report f (GRAYCODE(?)) =0
15: STEPS (27 41,27 + 2F)
16: for k from 1 to 27-L~1 do
17: CHUNK(j, k)
intra-chunk SIMD thread
counter outer loop core counter counter
ﬂ?ﬁxﬁwxx%‘HH‘HH‘HHYHHYHHY?%T T
0 L n—S-T n—.S n—1

The interest of doing so is that the pair (by(4),b2(i)) has a greater chance of depending only
on the lowest-significant bits of i, which means that the 2° threads of a single SIMD unit have
a greater chance of accessing to the same constant D[kq, ko|. It is then sufficient to fetch it once
in memory to feed the 2° threads. This seems particularly suited to NVIDIA GPU’s who are
capable of coalesced memory accesses.

If several SIMD units are available, it is very likely preferable to parallelize the outer loop,
i.e. the enumeration of the middle bits of i (paradoxically)...

Initialisation. Implementing this idea will require a slightly more sophisticated initialization
procedure, as we must be able to generate the internal state (the ¥ and DJ-] values) that are
ready to be used even if the loop starts “in the middle” (i.e. with ¢ > 1). This is however not
difficult. The second-order derivatives (the D[-,-]) can be shared by all threads, since they only
depend on the equations. With this, we can write algo 4.

Unrolling and avoiding tests again. Unrolling the loop with SIMD instructions is a teeny tiny
bit harder than before, because we ought to keep threads doing the same thing as much as
possible. The good thing is that u; only depend on i (since ¢ > 1, it follows that u; = b1(¢). The
bad thing is that when ¢ is a power of two, then v; depends on both ¢ and ¢. This means that

Algorithm 4 Very basic SIMD version

1: procedure ZEROES(f)
2: D[,] < INIT_CONSTANTS(f)

3: for ¢ from 0 to 25 — 1 do

4 (y¢, Di[-]) = INIT_STATE (f, ¢t - 2"~ 5)

5: if ¥; = 0 then report f (t . 2"’3) =0

6: for i from 1 to 2"~° — 1 do

7 for ¢t from 0 to 2° — 1 do

8: let j, =i+t-2""°in

9: let uy = b1(j¢) in

10: let v; = bo(j¢) in

11: if Ut 7& 1 then Dy [ut] <~ D, [ut] ® D [Ut, Ut]
12: S;t < }7} (&) Dt [ut]

13: if ¥; = 0 then report f (GRAYCODE(j;)) =0

inside a single SIMD unit, some threads will fetch different constants D[,] than some others.
Also, the zero-th thread still has vy = 1 when i is a power of two.

Long story short: we need to do something special when ¢ is a power of two (in fact this boil
down to precompute n vectors of special constants to use in place of the normal ones when i is
a power of two).

With unrolling, we obtain Algo. 5, which is the prototype of my SIMD implementation.

Algorithm 5 Improved SIMD version

1: procedure PARALLELSTEP(x)
2: let u = by (33) in

3: let v = ba(z) in

4: for ¢ from 0 to 2° — 1 do

5: Dy [u] < Dy [u] @ D [u,v]

6: yt < S;t D Dt [’LL]

7 if ¥, = 0 then report f (GRAYCODE(JC +t- 2"_5) =0
8: procedure SPECIALPARALLELSTEP(z)

9: let u=b1(z) in
10: for ¢ from 0 to 2° — 1 do
11: Dy [u] < Dy [u] @ Special D [u)
12: }_”t — ?t @ D, [u]
13: if ¥ = 0 then report f (GRAYCODE(z +t-2"%) =0

14: procedure ZEROES(f)

15: D[, -], Special D[] +— INIT_CONSTANTS(f)
16: for ¢ from 0 to 2° — 1 do

17: (y¢, Di[-]) = INIT_STATE (f, ¢t - 2"~5)
18: if ¥; = 0 then report f (t . 2"’5) =0
19: // Deal with the small macro-steps

20: for j from O to min(n — S, L) do

21: SPECIAL PARALLELSTEP (27)

22: for i from 27 + 1 to 27! — 1 do

23: PARALLELSTEP (%)

24: // Now split the large macro-steps in chunks
25: for j from L+1ton—S—1do

26: SPECIALPARALLELSTEP (27)

27: for i from 27 + 1 to 27! — 1 do

28: PARALLELSTEP (i)

